
 Page 1/8

A Model-Based methodology to support the Space System
Engineering (MBSSE)

 S. Mazzini1, E. Tronci2, C. Paccagnini3, X. Olive4

1: INTECS, Via Umberto Forti 5, Ospedaletto I-56121 Pisa, Italy

2: La Sapienza University of Roma, Via Salaria 113 I-00198 Roma Italy

3: Thales Alenia Space, Strada Antica di Collegno 253 I-10146 TORINO Italy

4: Thales Alenia Space, 100 Boulevard du Midi, BP 99 06156 CANNES LA BOCCA France

Abstract: This paper presents a model based
methodology that relies on the sound basis of the
most recent and widespread applicable system
engineering standards and model based practices,
The methodology has been defined to support
domain specific space system engineering standards
and practices and assessed through the application
on industrial case studies. A complementary formal
verification approach has also been experimented.

Keywords: model based, system engineering,
formal verification, methodology, process.

1. Introduction

The use of modeling techniques at different stages
of the development process is of crucial importance
in order to successfully realize space complex
systems.

The System and Software Functional Requirements
Techniques (SSFRT) (ESA/ESTEC Contract N.
21188/08/NL/JD) was a study for the application of
model based engineering technologies to support
the space system-software co-engineering
development processes, from mission level
requirements to software implementation through
model refinements. It aimed at making the software
constraints present since the system analysis and
avoiding any rupture during the development
process.

The SSFRT study objective was to investigate how
the system and software requirements processes
can be modeled and interrelated with special
emphasis during the early phases of a space system
project, through the application of SysML and the
integration of complementary and domain-specific
modeling technologies.

SysML is considered a very promising system
modeling language, its usage being currently
encouraged both by INCOSE and NASA in their
System Engineering Handbooks.

the ASSERT project constitutes a background for the
SSFRT study, that intended to complement the
ASSERT results at system level.

The study has resulted in the definition of the Model-
Based methodology to support the Space System
Engineering (MBSSE) [1].

2. MBSSE Overview

The MBSSE methodology addresses the early
phases of the system life cycle, in particular the
ECSS Phases 0, A, and B, from the early definition
of mission needs to the elaboration of a feasible,
preliminary system definition.

It was conceived with reference to the technical
processes and the principles defined in the ISO/IEC
15288, the major system engineering standard
providing a common process framework that can be
applied as a reference for any domain to cover the
life cycle of complex computer based systems.

The MBSSE methodology is based upon a model-
centric definition of the system using SysML and
adopts, where feasible, the model based
engineering approach to integrate complementary
and domain specific modeling languages.

The MBSSE methodology deals with system
requirements as first class citizens; they are
captured, visualized and traced along the modeling
process. The SysML model is the work product of
the methodology, describing and justifying the
requirements analysis in relation with the functional
analysis and the modeling of the system structure
and functional allocation.

Other languages and profiles may be integrated for
system analysis (Matlab, Petri Nets), to apply
discipline specific techniques (e.g. Simulink), or to
perform system and software co-engineering (UML,
MARTE, AADL, SOC, SCADE/Esterel, HRT-
UML/RCM, SDL).

 Page 2/8

The MBSSE methodology is compliant with the
following ECSS standards:

 the ECSS-E-00 [2], which sets the basic rules
and overall principles to be applied to all space
engineering activities during the performance of
a space project [ECSS-E-00];

 the ECSS-M-10 [3], which defines the phases
and the activities of space projects [ECSS-M-10]

 the ECSS-E-10 [4], which guides organizations
involved in the development of systems for
space applications by specifying the system
engineering requirements in relation with the
system engineering functions (requirement
engineering, analysis, design and configuration,
verification, integration and control) and the
specific phases of space systems (0, A, B, C, D,
E, F);

 The ECSS-E40 [5], which defines system and
software co-engineering requirements related
with software development;

The MBSSE allows you to deliver the required
documents (MRD, RB, etc.) associated to the
engineering activities, as specified in the ECSS-E-
10, during the design process. Each activity and their
related models are compliant with the mandatory
documents required to support project review
objectives as specified in ECSS-M-10 (MDR, PRR,
SRR, PDR, etc.).

In addition the MBSSE methodology strongly relies
on and integrates from the following bases:

 The ISO/IEC 15288:2008 System Engineering –
System Life Cycle Processes [6] International
Standard;

 The ISO/IEC TR 19760 System Engineering – A
guide for the application of ISO/IEC 15288
(System life cycle processes) ([7]).

 The INCOSE Systems Engineering Handbook
[8], that provides a large guideline for system
engineering with the application of the ISO/IEC
15288 standard.

The approach for the definition of the methodology
is:

 to support space system engineering according
to the ECSS standards, with emphasis on the
application of the E10 for the spacecraft
segment on the early phases 0, A and B, aimed
at achieving a feasible system specification,

 to integrate with the ISO/IEC 15288 technical
processes as reference processes,

 to adopt a model-driven solution using the
SysML language, from the mission requirement

capture to the model of the system feasible
specification.

Rationales are the following:

 SysML was conceived with reference to the
overall system engineering processes and
principles, as defined in the ISO/IEC 15288

 In particular SysML is able to cover the space
system engineering processes, from high–level
requirements to the architecture definition and
verification.

The steps to achieve the definition of this
methodology are the following:

 The ISO technical processes that are relevant to
the context of the methodology were identified

 A mapping from the ECSS-E-10 functions to the
relevant ISO technical processes was identified

 A correspondence between the ECSS phases 0,
A and B to the ISO processes was identified

 The relevant ISO technical processes were
initially tailored/integrated, in order to completely
fit in this framework.

The following figure illustrates the overall description
of the methodology resulting from the above
described theoretical approach.

Analysis

Verification

Requirement Engineering Design and Configuration

System Sw

Co-engineering

System Architecture

System Requirements

Activity/Outcome

E10 Functions Activity/ Information

Flow

Mission Requirements

and System Constraints

System Context

System Logical

Architecture

Analytical Support

System Use Cases and

Scenarios

Functional Analysis

Verification

by Analysis

Function partition and

allocation, Trade offs

Derived System Elements

Requirements

Mission Requirements

Definition Process

Iteration

Test Cases

System Requirements Analysis
Process

Architectural Design and
Verification Process

P
h

a
s
e

0
P

h
a
s
e

A
P

h
a
s
e

B

Analysis

Verification

Requirement Engineering Design and Configuration

System Sw

Co-engineering

System Architecture

System Requirements

Activity/Outcome

E10 Functions Activity/ Information

Flow

Mission Requirements

and System Constraints

System Context

System Logical

Architecture

Analytical Support

System Use Cases and

Scenarios

Functional Analysis

Verification

by Analysis

Function partition and

allocation, Trade offs

Derived System Elements

Requirements

Mission Requirements

Definition Process

Iteration

Test Cases

System Requirements Analysis
Process

Architectural Design and
Verification Process

P
h

a
s
e

0
P

h
a
s
e

A
P

h
a
s
e

B

Figure 1 The MBSSE Methodology

Three main System Engineering Processes
identified for the MBSSE methodology, are derived
from the ISO processes with the purpose to
specifically address the E10 functions and the space
project initial phases:

 The Mission Requirements Definition Process,
mainly addressing Phase 0 activities (derived
from the ISO Stakeholder Requirements
Definition Process),

 Page 3/8

 The Requirements Analysis Process, mainly
addressing Phase A activities (derived from the
ISO Requirement Analysis Process),

 The Architectural Design and Verification
Process, mainly addressing Phase B activities
(derived from the ISO Architectural Design
Process).

The MBSSE processes support the Phases 0, A and
B of the space projects, as defined in the ECSS
standards.

They are conceived to be applied iteratively across
the project phases in order to reach the specified
milestones. At each iteration, outputs are evaluated,
refinements are identified and trade-offs between
different criteria or between alternatives are
analyzed and discussed with the different
stakeholders and system discipline specialists; this
has the purpose to produce more refined and
consolidated outputs that meet stakeholder
expectations in a transparent and traceable way.

The activity flow, resulting from the iterative
application of the processes, will lead to the
preliminary definition and validation of the system
model, as well as to the definition and consolidation
of the associated requirements, from the
identification of mission needs down to the physical
description of the system elements.

The figure 2 shows the MBSSE process iterations
across the ECSS project phases and reviews and
minor and major deliveries for the reviews.

MDR

Mission Requirements

Definition

System Requirements

Analysis

Architectural Design

and Validation

Implementation
Co-

design

PRR SRR PDRMajor
Delivery

Minor
Delivery/
Refinement

MDR

Mission Requirements

Definition

System Requirements

Analysis

Architectural Design

and Validation

Implementation
Co-

design

PRR SRR PDRMajor
Delivery

Minor
Delivery/
Refinement

Figure 2 The MBSSE Processes and Iterations

Major deliveries represent consolidated outcomes
that represent transition gates from a phase to the
following one. Minor deliveries may represent initial
or intermediate results that are preliminary to major
outcomes, or refinements that may arise after major
outcomes.

As showed in figure 1, each MBSSE process is
composed by activities with the following
peculiarities:

 Each process activity may be iterated several
times, in order to achieve a satisfactory outcome
at each project phase.

 Process activities may be exercised concurrently
during each project phase.

 Process activities may be exercised, and equally
valid and necessary, at all levels of
decomposition within the space product.

 Process activities address lower levels with
greater thoroughness as the project progresses.

The MBSSE processes, activities and related flows,
that need to be carried out during each system
phase, are defined by a tailoring of the ISO
processes, activities, in order to integrate all the
ECSS requirements and to be supported by means
of SysML models.

The MBSSE methodology is that it extends at the
system level the validity of the separation of
concerns notion issued from the ASSERT project, by
confirming such results at the software level.

Functions, activities and behaviors representing
functional parts (function tree), are elaborated by the
Analysis Function and modeled at system level
separately from the non functional part, represented
by the definition of the system structure, interfaces,
boundaries and constraints (product tree),
elaborated by the Design and Configuration
Function. The two models are associated by
allocation of functional parts of the function tree to
the hardware/software elements of the product tree
and the allocation of software components to
hardware components.

This enables specification of the functional behavior
of software components, but also, as a consequence
of the allocation to the hardware, the inference of
most of the non functional properties of the software
components.

Today system engineers are using the function tree
implicitly. They have no use to represent it explicitly.

The “function tree” need is coming from the new
technologies which can be used on-board like TSP,
multi-core, …, and is required to allow a flexible
allocation into the hardware.

By instance, let consider a star tracker with a
hardware component (CCD sensor) and an
associated function (image processing). The function
can allocated to the star tracker itself (i.e. we have a
smart sensor) or on the central computer (i.e. the

 Page 4/8

star tracker is reduced to a CCD sensor). This trade-
off can be done at system level, only if the function
tree is available and contains the “image processing”
function.

Finally the function tree representation at system
level allows to remove a part of the implicit thing,
reducing the design risk.

Figure 3 shows an high-level view of the system
engineering model, partitioned into the collection of
related sub-models, each representing the outputs of
one of the main areas of the space system
engineering functions.

Figure 3 Model partitioning

The MBSSE methodology is based on the definition
of a SSE Profile of the OMG SysML and UML, that
defines a domain specific language for Space
System Engineering taking into account modeling
practices currently adopted in the space domain, as
well as the ECSS standards.

3. The Case Study

The MBSSE approach has been applied by Thales
Alenia Space on a real case study. The case study is
related to the ExoMars mission, and covers only
partially its perimeter. Both France and Italy were
involved in the project. This opportunity has been
used to highlight the fact that model can be
exchanged. Italy has been in charge of phase 0 and
A modeling. The model has then been sent to
France, which has modeled the phase B part.

Phase 0 modeling has been focused on the
definition of the mission requirements. Textual
requirements have been modeled. Mainly table (and
not graphical one) representation has been used for

visualization (Figur3 4). System context has been
defined by the use of SysML Block Definition
Diagram (BDD). Data and/or control flows have been
preliminary defined by the use flow specification.
Finally use case and activity diagrams have been
used to model the mission case and scenario.

Figure 4 – Requirement table

Phase A deals with the system requirements
refinement. Mission requirements have been refined
by using classical SysML requirement management
relationship. A functional architecture has been
defined based on the system requirements set. A
preliminary physical architecture, called system
logical architecture, is used as reference to perform
some trade-off and verification analysis. This
architecture can be inherited from past project, or a
new one from scratch. Traceability is ensured
between both architectures and requirements set. In
addition, they are both compliant with the previously
defined flows during phase 0. Functional architecture
is refined, by the addition of sub-function. In some
particular functional chain, some skeletons for
analytical support can be generated. By instance, for
AOCS (Attitude and Orbit Control System), each
function (AOCS mode, AOCS specific function) can
be mapped to a Matlab/Simulink block. It allows you
to have the same design in the functional
architecture and in the analytical support model.

Figure 5 Functional architecture and
analytical support

Phase B covers the consolidated definition of the
system. The requirements are refined and grouped
by logical subsystems. Requirements baseline is
available for each functional subsystem. The

 Page 5/8

refinement takes into account the constraints coming
from the functions allocation and trade-off analysis.
The system architecture is consolidated. All the
interfaces are fixed. The product tree is defined
based on the system logical architecture and on
physical units, supporting the allocation of functions.
Data and control flows are refined and allocated to
the defined interfaces.

Based on the current practices in Space domain,
system-software co-engineering is only addressed in
phase B. Due to paper length limitation, the
complete activity can be reported. First the model
has been transformed from SysML to UML modeling
language. Based on the UML model and the
interface definition, a LwCCM model has been
derived to represent the software architecture. The
non-functional (NF) properties (real time constraints,
dependability, …) are derived from software
requirements, and added by annotating the LwCCM
model. Figure Figure 6 provides an overview of the
used models and their interactions. The main result
is the conservation of the separation of concerns,
issued from ASSERT, at system and
system/software levels.

Figure 6 Separation of concerns

The application of MBSSE approach on a real case
can be considered as successful from the
methodological point of view. Nevertheless the tools
are still not enough mature to edit and handle model.
Some transversal functionalities like frozen a part of
the model to provide it to a third party, or managing
the model in a configuration management system.

4. System Level Formal Validation

The MBSSE methodology includes the application of
model checking techniques for System Level Formal
Validation.

System Level Formal Verification (SLFV) has the
goal of showing that requirements for the
subsystems a given system consists of are correct

with respect to the (overall) system requirements. In
other words, SLFV has the goal of guaranteeing that
if each subsystem satisfies its own requirements
then also the system built out of such subsystems
will satisfy its requirements. Accordingly, SLFV can
be an effective tool to support separation of
concerns, since, by using SLFV, we can guarantee
that the requirements for the subsystems are correct.

From the above we see that SLFV can be seen as a
Validation activity (answering the question: are we
building the right system?) for the subsystems and
as a Verification activity (answering the question: are
we building the system right?) for the overall system.

Accordingly, SLFV, together with testing and
simulation, can support System Level Functional
Analysis, more specifically, system level V&V. In this
respect note that testing and simulation are geared
towards showing presence of errors, thus they can
only provide evidence for a negative answer to V&V
questions. On the other hand, SLFV techniques (e.g.
model checking [9]) are geared towards showing
absence of errors, thus SLFV provides evidence for
a positive answer to V&V questions.

The classes of system models handled by the above
mentioned analysis techniques are also different. In
fact, testing and simulation can handle quite detailed
models as long as all inputs and parameters are
defined. On the other hand, formal techniques can
handle models with undefined parameters and inputs
(e.g., modeling faults or disturbances) as long as
such models have a moderate size. Thus, formal
techniques can be used for a worst case analysis
returning as output a worst case scenario (i.e. inputs
and parameters) for the system under analysis.

The above considerations suggests using formal
techniques as early as possible in the system design
activities, namely: as soon as some system model
(even qualitative) is available. In fact, this allows
early detection of errors in system or subsystem
specifications. For example, as for space software
development, the above considerations suggest
using formal techniques towards the end of phase A
or at the beginning of phase B.

4.1. Supporting Proof Continuity with SLFV

In our framework we can use SysML to define the
system structure as well as the interfaces between
subsystems. This make such information widely
available to system engineers. We can then use
specialized languages to define subsystems
behaviors or requirements.

Resting on the SysML system description, SLFV can
support proof continuity by using an assume-
guarantee verification approach to establish a formal

 Page 6/8

link between system level validation and subsystem
verification. To this end we can proceed as follows.

First, we assume that subsystems (software or
hardware) meet their requirements and verify (using
model checking techniques) that the overall system
meets its system level requirements. This verification
activity indeed validates the subsystems
requirements since it shows that subsystem
requirements are correct (i.e. we are building the
right subsystems).

Second, we guarantee that indeed the subsystems
(software or hardware) meet their requirements. This
is done by showing, for example by using model
checking techniques, that the implementation of
each subsystem satisfies the given specifications. Of
course, depending on how the subsystem is
implemented, a suitable model checker will be used.

Note that, as for model checking purposes, in the
system level validation activity we map requirements
into formal specifications and behavioral models into
formal models (for a model checker). On the other
hand, when using model checking tools to link
subsystems formal verification to system level
validation, we map model for subsystems into formal
specifications and implementations for subsystems
to formal models.

4.2. Model Checkers for SLFV

When modeling for SLFV we need to model the
behavior of all subsystems the system under
verification consists of. For example, in a control
system this means that the controller as well as the
controlled system (plant) will have to be modeled. In
our context the controller is often software based
whereas the plant is typically a physical system. This
yields a dynamical system which state can
undertake continuous (e.g. temperature, voltage,
current in the controlled system) as well as discrete
(e.g. mode of the controller policy) changes. Such
systems are known in the literature as Hybrid
Systems (HSs), for example see [10]. From the
above considerations follows that when choosing a
model checker to support SLFV we should consider
focusing on model checkers for hybrid systems.

4.3. An Example: The Battery Manager System

In the SSFRT project SLFV has been applied to a
case study proposed by Thales Alenia Space
France: the Battery Manager System (BMS) shown
in Figure 4. The CMurphi model checker [11, 12, 13]
has been used to model BMS and to verify some
given safety properties. Details are in [1].

We focus our SLFV analysis on the dependency of
the BMS controller (BM in Figure 4) sampling time
(T, in seconds, in Table 1) from the maximum
voltage available from the solar cells (VS, in Volt, in
Table 1).

Figure 7 Battery Manager System (BMS)

Intuitively, BM policy should be correct as long as T
is not too large with respect to the speed of system
dynamics. Of course, the larger T, the larger BM
reaction time and the easier the design of BM since
it will have more time available for computing the
command to be sent to the actuators.

Table 1 summarizes our findings. Column "CPU"
gives the CPU time (in seconds) to complete the
verification task using CMurphi. Column "SLFV
Outcome" summarizes CMurphi output.

Table 1: Experimental results for BMS formal
verification using CMurphi on a 2GHz Dual Core

Linux Pentium PC with 2GB of RAM.

From Table 1 we see that the larger the voltage from
the solar cell the smaller should be the controller
sampling time. Thus, our SLFV activity effectively
shows how software requirements depend on
physical parameters, namely, the max solar cell
voltage.

4. Lessons Learned

This section provides a description of the 3 main
identified weak points and the 3 main strong points.

First weak point is related to the current Space
engineering practice : The physical architecture
appears too late. In the MBSSE methodology, the
physical architecture is defined in phase B. Current
habits are to have a first physical architecture in
phase A. This point is not a blocking one but
requires to change the way of designing and to make
system engineers understand the commonality

between a logical system architecture and a

VS

T CPU SLFV Outcome

150 9 1216.16 No error found

150 10 117.47 No error found

150 11 24.72 Safety Violation found

200 9 1259.59 No error found

200 10 47.19 Safety Violation found

200 11 25.01 Safety Violation found

 Page 7/8

preliminary physical architecture. Typically today the
design approach used in CDF in more a bottom-up
one (instead of descending one in MBSSE). This
point can be considered as a positive for the
methodology itself but is weak point in the frame of
its adoption.

Second weak point is about SysML. It is a generic
defined modeling language for system engineers
across all the application domains (Space,
Automotive, Nuclear, Airplane, …). In this sense it
provides generic features which need to be
specialized with regard to the Space domain. For
instance, a block model element can represent a
product, a function, a part, … During the study, an
appropriate profile called SSE has been defined. We
recommend to use some domain specific profile or
language.

Finally the third weak point is about the maturity of
(open-source) tools supporting SysML, so that it is
still not possible to recommend a tool for specific
industrial use. Main issues are about the transversal
functionalities (sharing, versioning, splitting, …) and
the way to deal with views, to enable the
management of big-sized model.

One of the main contribution of the MBSSE
methodology is to maintain the separation of
concerns from systems engineering to software
engineering. It is present during all phases 0, A and
B. On one hand, functions, activities and behaviors
representing the functional part are designed in an
analysis activity; on the other hand, the non
functional part is represented by the definition of
system interfaces and boundaries, and then the
product tree. The association between both is
performed during phase B by allocating the
functional part (function tree) to the non functional
one (product tree).

A second improvement is about the traceability.
SysML enables full traceability from phase 0 to
phase B. With a restricted number of relations
(mainly allocation, refine, derive), all the model
elements can be linked altogether. Traceability is
expressed from/to the requirements model element
and can be extended to the other model elements
(like software element / component).

The third main enhancement is to keep the
separation between system and software
engineering. System - software co-engineering
activity is used to go from one world to the other one.
For this activity, the system provides as inputs a set
of functions/activities to develop (functional part),
and a set of non functional elements. Allocation
relations can be used to map system block to
software components. Mapping can be one-one, n-
one or one-n. The allocation relation introduces
flexibility between system and software, and permits

to have 2 different but compliant points of view of a
software based system.

In complement to this specific advantages, MBSSE
offers the classical ones issued from MDE approach:
reuse of models, complexity coping, … .

5. Conclusion

There is a need for a common modeling language to
improve communication and cooperation among the
different space system domain disciplines, in order
that they can work in an integrated way, and to
realize seamless integration among the different
space development phases.

The SysML language can provide an harmonization
and integration models for the involved disciplines
across the whole system life cycle, even if there is
the need for defining a profile (such as SSE) or DSL
to specialize SysML to model the entities that are
handled by the Space system engineers.

Properties and behavior of system models shall be
verified in the model instead of being just tested after
development, in particular they can be formally
verified by application of model checking techniques.

The use of models to support the system
requirements engineering process was aimed at
improving the system requirements allocation
process towards the software requirements
engineering process.

On the other side, design constraints and system
requirements refinement imposed by software on the
system functions realization can be easily taken into
account if both processes are managed and
supported by modeling techniques:

 System requirements may be fully traced to the
software requirements.

 Mappings from the system modeling language to
the software engineering modeling languages
may be defined, according to the ASSERT
approach of the separation of concerns.

6. Acknowledgement

We are grateful to the ESA ESTEC Project Officer
Andreas Jung and Head of the TEC-SWE Division
Jean-Loup Terraillon for the very useful discussions
we had within the framework of the SSFRT project.

7. References

[1] S. Mazzini (ed.), S. Puri, X. Olive, C. Paccagnini, E.
Tronci: "Guidelines for Model Based Space System
Engineering ", SSFRT Report, 2009.

[2] ECSS-S-ST-00C, ECSS System, Description,
Implementation and General Requirements, 31 July

2008.

 Page 8/8

[3] ECSS-M-ST-10C, Space project management,
Project planning and implementation, 31 July 2008.

[4] ECSS-E-ST-10C, Space Engineering, System
Engineering General Requirements, 6 March 2009.

[5] ECSS-E-ST-40C, Space Engineering, Software, 15
March 2008.

[6] ISO/IEC 15288, System engineering, System life
cycle processes, ISO/IEC 15288:2008(E) IEEE Std
15288-2008, 2008.

[7] ISO/IEC TR 19760, System Engineering – A guide
for the application of ISO/IEC 15288 (System life
cycle processes), 2003.

[8] Haskins, Cecilia (ed.), INCOSE Systems
Engineering Handbook: A Guide for System Life
Cycle Processes and Activities, v. 3.1, INCOSE-
TP-2003-002-03.1, International Council on
Systems Engineering, August 2007.

[9] E. M. Clarke, O. Grumberg, D. A. Peled, Model
Checking, Cambridge, Mass., MIT Press, 1999.

[11] R. Alur, T. A. Henzinger, and Pei-Hsin Ho,
Automatic symbolic verification of embedded
systems, IEEE Trans. on Software Engineering
22:181-201, 1996.

[12] G. Della Penna, B. Intrigila, I. Melatti, M. Minichino,
E. Ciancamerla, A. Parisse, E. Tronci, and M. Zilli.
Automatic verification of a turbogas control system
with the murphi verifier. Hybrid Systems:
Computation and Control, LNCS, Springer, 2003

[13] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, M.
Zilli: Exploiting transition locality in automatic
verification of finite-state concurrent systems,
International Journal on Software Tools for
Technology (STTT) 6(4): 320-341 (2004)

[14] G. Della Penna, B. Intrigila, I. Melatti, E. Tronci, M.
Zilli: Finite Horizon Analysis of Markov Chains with
the Murphi Verifier, International Journal on
Software Tools for Technology (STTT), Vol 8, N. 4-
5, p. 397-410, Aug.

